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Audiovisual adaptation is expressed in spatial and
decisional codes
Máté Aller 1,2,5✉, Agoston Mihalik 1,3,5 & Uta Noppeney 1,4

The brain adapts dynamically to the changing sensory statistics of its environment. Recent

research has started to delineate the neural circuitries and representations that support this

cross-sensory plasticity. Combining psychophysics andmodel-based representational fMRI and

EEG we characterized how the adult human brain adapts to misaligned audiovisual signals.

We show that audiovisual adaptation is associated with changes in regional BOLD-responses

and fine-scale activity patterns in a widespread network from Heschl’s gyrus to dorsolateral

prefrontal cortices. Audiovisual recalibration relies on distinct spatial and decisional codes

that are expressed with opposite gradients and time courses across the auditory processing

hierarchy. Early activity patterns in auditory cortices encode sounds in a continuous space that

flexibly adapts to misaligned visual inputs. Later activity patterns in frontoparietal cortices code

decisional uncertainty consistent with these spatial transformations. Our findings suggest that

regions within the auditory processing hierarchy multiplex spatial and decisional codes to adapt

flexibly to the changing sensory statistics in the environment.

https://doi.org/10.1038/s41467-022-31549-0 OPEN

1 Computational Neuroscience and Cognitive Robotics Centre, University of Birmingham, Birmingham, UK. 2MRC Cognition and Brain Sciences Unit, University of
Cambridge, Cambridge, UK. 3Department of Psychiatry, University of Cambridge, Cambridge, UK. 4Donders Institute for Brain, Cognition and Behaviour,
Radboud University, Nijmegen, Netherlands. 5These authors contributed equally: Máté Aller, Agoston Mihalik. ✉email: mate.aller@mrc-cbu.cam.ac.uk

NATURE COMMUNICATIONS |         (2022) 13:3924 | https://doi.org/10.1038/s41467-022-31549-0 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31549-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31549-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31549-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31549-0&domain=pdf
http://orcid.org/0000-0001-7096-5180
http://orcid.org/0000-0001-7096-5180
http://orcid.org/0000-0001-7096-5180
http://orcid.org/0000-0001-7096-5180
http://orcid.org/0000-0001-7096-5180
http://orcid.org/0000-0002-4510-4933
http://orcid.org/0000-0002-4510-4933
http://orcid.org/0000-0002-4510-4933
http://orcid.org/0000-0002-4510-4933
http://orcid.org/0000-0002-4510-4933
http://orcid.org/0000-0002-7697-2290
http://orcid.org/0000-0002-7697-2290
http://orcid.org/0000-0002-7697-2290
http://orcid.org/0000-0002-7697-2290
http://orcid.org/0000-0002-7697-2290
mailto:mate.aller@mrc-cbu.cam.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Throughout life the brain needs to adapt dynamically to
changes in the environment and the sensorium. Changes in
the sensory statistics evolve across multiple timescales

ranging from milliseconds to years and bring cues from different
sensory modalities into conflict. Most notably, physical growth,
ageing or entering a room with reverberant acoustics can pro-
foundly alter the sensory cues that guide the brain’s construction
of spatial representations. To maintain auditory and visual-spatial
maps in co-registration the brain needs to constantly recalibrate
the senses1.

Recalibrating auditory and visual-spatial maps is particularly
challenging because the two sensory systems encode space not
only in different reference frames (i.e. eye vs. head-centred) but
also in different representational formats2–4. In vision, spatial
location is encoded directly in the sensory epithelium and reti-
notopic maps of visual cortices (‘place code’)5. In audition, azi-
muth location is computed mainly from interaural time and level
differences in the brain stem2. In primate auditory cortices, sound
location is thought to be encoded by activity differences between
two neuronal populations, broadly tuned to ipsi- or contra-lateral
hemifields (i.e. ‘hemifield code’)6–9. Less is known about the
coding principles at successive processing stages in parietal or
prefrontal cortices, in which the hemifield code may be converted
into a place code with narrow spatial tuning functions compar-
able to vision (e.g. ventral intraparietal area10).

Mounting behavioural research illustrates the brain’s extra-
ordinary ability for cross-sensory plasticity. Most prominently,
exposure to synchronous, yet spatially misaligned audiovisual
signals biases the observer’s perceived sound location towards a
previously presented visual stimulus—a phenomenon coined
ventriloquist aftereffect3,11–19. This cross-sensory adaptation to
intersensory disparities emerges at multiple timescales ranging
from milliseconds13,18,20 to minutes3,16,17,19 or even days21.

Yet, the underlying neural circuitries, mechanisms and repre-
sentations that support cross-sensory plasticity remain unknown.
The frequency selectivity of audiovisual recalibration has initially
pointed towards early stages in tonotopically organized auditory
cortices (see ref. 16 but ref. 14). By contrast, the involvement of
hybrid spatial reference frames that are neither eye- nor head-
centred suggested a pivotal role for parietal cortices or inferior
colliculus3,22.

Importantly, recalibration may arise at multiple levels affecting
spatial and choice-related computations. While the former alters
the neural encoding of sound location irrespective of the task, the
latter affects the read-out of decisional choices from those neural
representations. The dissociation of the two is challenging for
behavioural research that is forced to estimate recalibration from
behavioural responses. Likewise, previous neuroimaging studies
were not able to disentangle the two, because they employed a
spatial localization task that maps each sound location onto one
particular response choice, thereby conflating spatial and choice-
related processes13,19,20. To dissociate changes in spatial and
decisional representations, we need neuroimaging experiments
that map different sound locations onto identical decisional
choices17 (i.e. classification tasks).

In this work, we show that changes in audiovisual statistics
shape neural representations in a spatial classification task on
auditory stimuli. Combining model-based analyses of regional
BOLD-responses and fine-scaled EEG and fMRI activity
patterns we reveal that audiovisual recalibration relies on dis-
tinct spatial and decisional codes that are expressed with
opposite gradients and time courses across the auditory pro-
cessing hierarchy. Our findings suggest that regions within the
auditory processing hierarchy multiplex spatial and decisional
codes to adapt flexibly to the changing sensory statistics in the
environment.

Results
For each participant, we performed psychophysics, functional
magnetic resonance imaging (fMRI) and electroencephalography
(EEG) experiments for 13 days (Fig. 1a). Each experiment
included unisensory auditory pre-adaptation, left (i.e. VA) and
right (i.e. AV) audiovisual adaptation, and auditory postVA/
postAV-adaptation phases. During pre- and post-adaptation
phases, participants were presented with auditory stimuli at
7 spatial locations (±12°, ±5°, ±2° and 0°) along the azimuth. They
performed a left-right spatial classification task only on 22% of
‘response trials’ that were randomly interspersed in ‘non-response
trials’ (Fig. 1b). During the audiovisual adaptation phases, parti-
cipants were presented with a sound in synchrony with a visual
stimulus that was displaced in separate sessions by 15° to the left
or right of the sound location. To focus on implicit perceptual
recalibration, observers performed a non-spatial task during the
adaptation phases: they detected small changes in the contrast to
the visual stimulus that occurred on 10% ‘response trials’ (see
Fig. 1b). Direct comparison of postVA and postAV-adaptation
trials enables the assessment of recalibration unconfounded by
time and learning effects.

Behavioural results. Throughout all experiments, observers were
attentive and followed task instructions as indicated by a sensi-
tivity index (d’) of >4 across all experimental phases (Supple-
mentary Table 1). Observers responded to >88% of ‘response
trials’ (i.e. ‘hits’) both in the pre-/post-adaptation (i.e. 22%
response trials) and the adaptation phases (i.e. 10% response
trials, Supplementary Table 1). They made only <1.43% responses
to ‘non-response trials’ (i.e. ‘false alarms’).

Likewise, eye movement analyses during the psychophysics
experiment showed that fixation was well maintained on
94.02 ± 1.00% (mean ± SEM) of the trials throughout the entire
experiment with no significant differences in eye movement
indices between postVA- and postAV-adaptation phases (i.e. %
saccades, % eye blinks and post-stimulus mean horizontal fixation
position, see Supplementary Note 1: Eye movement results).
Potential recalibration effects are therefore not confounded by eye
movements.

To assess whether exposure to misaligned visual signals
recalibrates observers’ sound representations, we fitted cumula-
tive Gaussians as psychometric functions to the percentage
‘perceived right’ responses in the auditory post-adaptation phases
(Fig. 2a). Consistent with previous research15–17 observers’
perceived sound locations shifted towards the displaced visual
stimulus that was presented in the prior adaptation phases,
causing the psychometric function to shift in the opposite
direction (see Supplementary Fig. 1). Bayesian model comparison
confirmed that the recalibration model that allows for shifts in the
point of subjective equality (PSE) across pre-, postVA- and
postAV-adaptation phases was exceedingly more likely than the
static model in which the PSE values were constrained to be equal
(random effects analysis with Akaike criterion as an approxima-
tion to the model evidence yielded protected exceedance
probabilities >0.90 in each of the psychophysics, fMRI and EEG
experiments; Supplementary Table 2). Moreover, paired t-tests of
the PSE values (from the recalibration model) between postVA-
and postAV-adaptation phases revealed significantly more
positive PSE for postVA-adaptation than for postAV-adaptation
phases (one-tailed p-values for the second level bootstrap-based
paired t-tests: psychophysics: t(14)= 11.4, p < 0.0001; fMRI:
t(4)= 9.4 p= 0.010; EEG: t(4)= 9.2, p= 0.011) (Fig. 2b). This
was also consistently reflected in participants’ mean response
times across the three experiments (see Supplementary Fig. 2).
Collectively, our behavioural results confirmed that prior
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exposure to disparate audiovisual signals recalibrates observers’
spatial classification responses to sounds.

fMRI: spatial encoding and recalibration indices. Using multi-
variate decoding we identified brain areas that (i) encoded sound
location and (ii) recalibrated this encoded sound location. Guided
by previous research7,19,23–26 we focused on five regions of interest
(ROI): Heschl’s gyrus (HG), higher auditory cortex (hA, mainly
planum temporale), intraparietal sulcus (IPS), inferior parietal
lobule (IPL) and frontal eye-field (FEF). In each of those ROIs we
trained a linear support vector regression model (SVR, LIBSVM27)
in a four-fold cross-validation scheme to learn the mapping
from BOLD-response patterns of the pre-adaptation phase
to external auditory locations. We used this learnt mapping
to decode the sound location from the activation patterns of the

pre-, postVA- and postAV-adaptation phases. Focusing selectively
on the pre-adaptation trials, we observed significantly better than
chance decoding accuracies (i.e. ‘spatial encoding index’, the Fisher
z-transformed Pearson correlation coefficient between the true and
the decoded sound locations) across all ROIs along the auditory
spatial processing hierarchy with a maximal decoding accuracy in
planum temporale (t-values and FDR-adjusted one-tailed p-values
for the second level bootstrap-based one-sample t-tests: HG:
t(4)= 2.47, p= 0.028; hA: t(4)= 6.58, p= 0.020; IPS: t(4)= 4.04,
p= 0.020; IPL: t(4)= 4.27, p= 0.020; FEF: t(4)= 2.84, p= 0.023,
see Fig. 3a).

To assess whether these encoded sound locations adapt to
displaced visual stimuli, we computed the recalibration index (RI)
as the difference between the fraction of ‘decoded right’ (i.e.
positive azimuth) in the postAV-adaptation phase minus the
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Fig. 1 Study and experimental design. a The study included one day of pre-screening, 4 days of psychophysics testing, 4 days of fMRI and 4 days of EEG.
b Each day included (i) auditory pre-adaptation, (ii) left (i.e. VA) or right (AV) audiovisual adaptation and (iii) auditory post-adaptation phases. In the pre-
adaptation and post-adaptation phases, observers were presented with unisensory auditory stimuli sampled from seven (±12°, ±5°, ±2° and 0° visual
angle) locations along the azimuth. They performed a spatial (left vs. right) classification task on 22% of the trials (‘response trial’) that were indicated by a
brief dimming of the fixation cross 500ms after sound onset. In the audiovisual adaptation phases, observers were presented with audiovisual stimuli with
a spatial disparity of ±15°: the visual signal was sampled from three locations along the horizontal plane (i.e. −5°, 0° and 5°) and the visual signal was
spatially shifted by 15° either to the left (i.e. VA-adaptation) or to the right (i.e. AV-adaptation) with respect to the auditory stimulus. Observers were
engaged in a non-spatial visual detection task on 10% of the trials (‘response-trial’) indicated by the lower contrast of the visual signals. Each day started
with the pre-adaptation phase. Next, VA (or AV) adaptation phases alternated with postVA (or postAV) adaptation phases. This figure shows the
experimental details for the fMRI experiments, which were slightly modified for EEG and psychophysics experiments (for details see Experimental design
and procedure section).
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postVA-adaptation phase. If the decoded sound location shifts
towards the disparate visual signal during the AV- and VA-
adaptation phase, we would expect a positive recalibration index.
Consistent with this conjecture we observed a RI that was
significantly greater than zero in nearly all ROIs (t-values and
FDR-adjusted one-tailed p-value of second level bootstrap-based
one-sample t-tests, HG: t(4)= 3.55, p= 0.042, hA: t(4)= 3.33,
p= 0.010, IPL: t(4)= 4.31, p= 0.026, FEF: t(4)= 2.49, p= 0.047,
and a trend in IPS: t(4)= 1.81, p= 0.086, see Fig. 3a).

These results provide initial evidence that regions along the
dorsal auditory processing hierarchy show an overall effect of
recalibration averaged across all sound locations.

fMRI: neurometric functions. Similar to our behavioural ana-
lysis, we fitted cumulative Gaussians as neurometric functions to
the percentage ‘decoded right’ (i.e. positive azimuth) separately
for the pre-, postVA- and postAV-adaptation phases at the group
level (see Fig. 3b). Consistent with our behavioural findings the
neurometric functions shifted rightwards after VA-adaptation
and leftwards after AV-adaptation. Bayesian model comparison28

provided strong evidence29 for the recalibration model that allows
for changes in PSE values between pre, postVA- and postAV-
adaptation phases relative to a static model in which the PSE
values were constrained to be equal (Akaike criterion > 2.3 (evi-
dence in favour of the recalibration model) in all ROIs; HG: 10.6,
hA: 15.5, IPS: 12.7, IPL: 8.0, FEF: 5.6; Supplementary Table 3).

fMRI: representational similarity analysis. Our linear decoding
results indicate that auditory representations throughout the
processing stream are altered by prior AV recalibration. Critically,
our results so far are agnostic about the coding principles
underlying this pervasive cross-sensory plasticity. Next, we
therefore characterized the geometry of the neural representations
across the seven sound locations using representational similarity
analysis (RSA30). For visualization, we projected the group-
level representational dissimilarity matrices (RDMs, averaged
across participants) with non-classical multidimensional scaling
(MDS31) onto a single dimension to incorporate the spatial
organization along the azimuth (i.e. as physical space, see Fig. 3c).
Particularly, the higher auditory cortex (hA, including planum
temporale) and IPS encoded the seven sound locations largely
consistent with the physical distances of the sound locations. For
instance, in hA, IPS and IPL the MDS distance is greater for the
sound locations 12° and 5° than for the locations 5° and 0°. This
was also reflected in the Spearman’s rank-correlation (RS)
between MDS projected and true spatial locations (hA: RS(5)= 1;
IPS: RS(5)= 1; IPL: RS(5)= 1). By contrast, the representational
geometry in HG and FEF does not fully correspond to the phy-
sical sound distances (HG: RS(5)= 0.86; FEF: RS(5)= 0.54; see
Fig. 3c bottom row). Across all regions, the MDS shows spatial
shifts to the left (resp. right) after VA- (resp. AV)-adaptation.
Again, the similarity between neural representations in hA, IPS,
and IPL obeyed the physical order of the sound locations (hA:
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Fig. 2 Behavioural results. a Psychometric functions fitted to the behavioural data from the psychophysics, fMRI and EEG experiments for pre-, postAV-
and postVA-adaptation phases (semi-transparent lines represent subject-specific psychometric functions, solid lines represent across-subjects’ mean).
b Across-subjects’ mean (±SEM, n= 15 subjects for psychophysics, n= 5 subjects for fMRI and EEG) of the PSE for pre-adaptation, postVA- and postAV-
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relative to postVA-adaptation (dark blue) phases in every single participant. PSE point of subjective equality, SEM standard error of the mean. Source data
are provided as a Source Data file.
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RS(12)= 0.91; IPS: RS(12)= 0.92; IPL: RS(12)= 0.93), while this
is less clear for HG and FEF (HG: RS(12)= 0.68; FEF: RS(12)=
0.41). For instance, in FEF the neural representations for the
‘−12° sound’ are shifted towards the centre (see Fig. 3c, FEF in
bottom row).

Model-based fMRI analysis: dissociating perceptual and deci-
sional codes. MDS revealed subtle differences in representational

geometry across regions that may arise from the mixing of
multiple representational components. Most notably, recalibra-
tion may affect spatial and decisional (i.e. choice-related) repre-
sentations. To arbitrate between these hypotheses, we compared a
spatial, a decisional and a combined spatial + decisional uncer-
tainty model as explanations for the regional mean BOLD-
response and/or the fine-scale activation patterns using pattern
component modelling (PCM).
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fraction ‘decoded right’ (i.e. positive azimuth) for postAV-adaptation vs. postVA-adaptation) in the ROIs as indicated. FDR-corrected one-tailed p-values
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as a Source Data file.
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Pattern component modelling is a relatively recent methodo-
logical approach that, similar to related multivariate analysis
approaches (e.g. multivariate multiple regression or multivariate
analysis of variance) models multivariate observations (i.e. multi-
voxel activity patterns) by a set of explanatory variables (e.g.
experimental conditions) under Gaussian assumptions. Critically,
it does not fit individual voxel weights but second-order
parameters that determine the similarity structure or distribution
of activity profiles over voxels as incorporated in the second-
moment matrix. By marginalizing over all possible voxel-specific
feature weights PCM obtains the marginal likelihood of the
data given the model that can be used for model comparison (for

further details see refs. 32,33). PCM thus allows us to adjudicate
whether the activity distribution over voxels is better accounted
for by spatial, decisional or combined spatial + decisional coding.

To model spatial/perceptual representations we used the
hemifield model (see Fig. 4a) that encodes sound location in
the relative activity of two subpopulations of neurons, each
broadly tuned to the ipsi- or contra-lateral hemifield6,34. Because
the hemifield and place code models make near-indistinguishable
predictions for the pattern similarity structure over the relatively
central locations used in the current study, we applied the
hemifield model as a generic spatial model to all regions (for
details, see Supplementary Methods: Comparison of spatial
hemifield and place code models). The decisional uncertainty
model (see Fig. 4a) codes observers’ decisional uncertainty as a
non-linear function of the distance between the spatial estimate
from the left/right classification boundary35 (see Methods for
further details).

Because a region may combine spatial and decisional coding,
we first assessed whether (i) the spatial model (S), (ii) the
decisional uncertainty model (D) or (iii) the combined spatial +
decisional uncertainty model (S+D) were the best explanations
for our data from the pre-adaptation phase. In a second step, we
used the combined spatial + decisional uncertainty model to
assess the contributions of the spatial and decisional components
to recalibration by comparing: (i) spatial + decisional with no
recalibration in either model component (S+D), (ii) spatial with
recalibration + decisional (SR+D), (iii) spatial + decisional with
recalibration (S+DR) and (iv) spatial with recalibration +
decisional with recalibration (SR+DR) as explanations for the
data from the pre-, postAV- and postVA-adaptation phase. Each
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contra-lateral hemifield. The ratio of the ipsi- and contralaterally tuned
neurons was set to 30%/70% consistent with prior research8. The
decisional uncertainty model encodes observers’ decisional uncertainty as a
non-linear function of the distance between the spatial estimates and the
spatial classification boundary. b Predicted mean BOLD-response as a
function of sound location along the azimuth in a left hemisphere region for
pre-, postVA- and postAV-adaptation. The spatial model predicts a BOLD-
response that increases linearly for sound locations along the azimuth. The
decisional uncertainty model predicts BOLD-response that decays with the
distance from the decision boundary in an inverted U-shaped function.
Further, this inverted U-shaped function shifts along the azimuth when
spatial estimates are recalibrated. The model predictions were obtained by
averaging the simulated neural activities across 360 neurons in a left
hemisphere region. c Predicted representational dissimilarity matrices
(RDM) based on the individual model neural activity profiles across spatial
locations (−12° to 12°) and experimental phases (pre, postVA and
postAV). We simulated RDMs from the spatial (left) and the decisional
(right) model for (i) top row: no recalibration, i.e. without a representational
shift and (ii) bottom row: with recalibration, i.e. with a representational
shift. Solid white lines delineate the sub-RDM matrices that show the
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the postAV- and the postVA-adaptation phases. Comparing the RDMs with
and without recalibration along those dashed white lines shows how the
shift in spatial representations towards the previously presented visual
stimulus alters the representational dissimilarity of corresponding stimulus
locations in postAV- and postVA-adaptation phases, while the off-
diagonals show the dissimilarity values for neighbouring spatial locations.
Source data are provided as a Source Data file.
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model component accounted for recalibration by shifting the
‘encoded sound locations’ by a constant ±2.3° (i.e. across-subjects’
mean in behavioural PSE shift) to the right (postVA-adaptation)
vs. left (postAV-adaptation). As shown in Fig. 4, the spatial and
decisional uncertainty models make distinct predictions for
the regional mean BOLD-response (Fig. 4b) and the similarity

structure of activity patterns over sound locations (Fig. 4c). In
supplementary analyses, we also explored whether additional
model components that account for observers’ binary left/right
decisional choices account for additional variance in our data (see
Supplementary Note 2: Assessment of decisional choice model
in fMRI and EEG). In the main text we focus mainly on the
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predictions of the spatial and decisional uncertainty models
because the predictions of the decisional uncertainty model (but
not of the decisional choice model) are largely independent from
those of the spatial model.

Regional mean BOLD-response—linear mixed-effects model-
ling. The spatial model predicts that the regional mean BOLD-
response of—for instance—a left hemisphere region increases for
stimuli towards the right hemifield. Likewise, its response to all
sounds irrespective of location should be greater after right reca-
libration. By contrast, the decisional uncertainty model predicts a
mean BOLD-response that peaks at the decisional boundary and
tapers off with a greater distance from the boundary. As a result of
recalibration, this peak shifts towards the left or right, because the
brain’s spatial estimates have been recalibrated leading to a change
in the relative distance between the spatial estimates and the
decision boundary (see Fig. 4b). For instance, the encoded spatial
estimate for a sound stimulus at the physical location of 5° may be
shifted towards the left after left recalibration (i.e. visual signal
displaced towards the left of the auditory location). As a result, the
decisional boundary and spatial location that is associated with the
greatest decisional uncertainty is shifted towards the right after left
recalibration (see Supplementary Fig. 1).

In hA the mean BOLD-response increased progressively for
stimuli along the azimuth as expected under the spatial model
(Fig. 5a). By contrast, in IPS, IPL and FEF the BOLD-response
peaked for physical 0° sound location in the pre-adaptation
phase, left sound locations (i.e. <0°) in the postAV-adaptation
and right sound locations (i.e. >0°) in the postVA-adaptation
phase as expected under the decisional uncertainty model. This
visual impression was confirmed by Bayesian model comparison
of the three (i.e. spatial, decisional, spatial + decisional) linear
mixed-effects (LME) models that included the simulated activity
of the respective models as fixed effects predictors (with the
additional constant term) and were fitted to the pre-adaptation
phase alone. The Bayes factors provided strong evidence for the
spatial model in hA and moderate evidence for the decisional
uncertainty model in IPS (see Supplementary Table 4). In HG,
IPL and FEF the most parsimonious baseline model out-
performed or was on par with the other models suggesting that
the regional BOLD-response in those regions did not provide
reliable information about sound location in the pre-adaptation
runs. For the recalibration analysis, we designed each LME model
using the simulated activity of the spatial and/or decisional
uncertainty models as fixed effects predictors (in addition to a
constant regressor) for the 7 (sound locations) × 3 (pre-, postAV-
and postVA-adaptation) conditions. We observed a small trend
toward spatial coding in hA (i.e. SR+D and SR+DR > S+D and
S+DR), but moderate evidence towards decisional coding in IPL
and strong evidence in IPS and FEF (i.e. SR+DR and S+DR >

S+D and SR+D, Fig. 5b bottom row, Supplementary Table 4).
This suggests that the mean regional BOLD-response follows the
predictions of the hemifield model only in hA. By contrast in IPS,
IPL and FEF the regional mean BOLD-response mainly reflects
activity associated with the decisional uncertainty invoked by
mapping the recalibrated spatial estimates onto observers’
decisional boundary. Adding predictors encoding observers’
decisional spatial choices did not increase the model evidence
in any of those regions (see Supplementary Note 2: Assessment of
decisional choice model in fMRI and EEG).

Fine-scale activation pattern—pattern component modelling.
Using pattern component modelling (PCM32) we investigated
whether spatial and decisional codes contributed to the fine-scale
voxel-level activation patterns and the recalibration effects. Con-
sistent with our analysis of the regional mean BOLD-response we
fitted and compared a baseline model that assumes independence
of activation patterns across conditions with the spatial, decisional,
and combined spatial + decisional PCM models. All these models
were fitted to the 7 (sound locations) in the pre-adaptation con-
ditions. In a second step we used the combined spatial+ decisional
uncertainty model to assess whether recalibration was expressed in
spatial, decisional, or spatial+ decisional codes using data from the
pre-, postVA- and postAV-adaptation phases (see Fig. 5c). We
fitted all models (e.g. spatial and/or decisional etc.) and a fully
flexible model using a leave-one-subject-out cross-validation
scheme. The fully flexible model accommodates any possible cov-
ariance structure of activity profiles and enables us to assess whe-
ther a particular target model accounts for the key representational
structure in the observations given the measurement noise and
inter-subject variability (see Fig. 5c).

As shown in Fig. 5c top row, the Loge-Bayes factors (averaged
across participants ±SEM) provided strong evidence for the spatial
relative to the decisional uncertainty model in HG and hA (see
Supplementary Table 5 for exact values). In HG, the spatial
component alone was sufficient to reach the threshold set by the
fully flexible model. In all other regions, i.e. hA, IPS, IPL and FEF,
the combined spatial+ decisional uncertainty model outperformed
the single-component models suggesting that in those regions
spatial and decisional representations together contribute to
adaptive coding. Moreover, the decisional component became
progressively more dominant along the dorsal processing hier-
archy. In FEF the decisional uncertainty model even outperformed
the spatial model.

The recalibration results further emphasized these opposite
gradients for spatial and decisional coding along the auditory
processing stream. As shown in Fig. 5c bottom row, in HG and
hA the models expressing recalibration in spatial coding (SR+D
and SR+DR) outperformed those without recalibration in spatial
coding (S+D and S+DR). The evidence was strong in hA, but

Fig. 5 fMRI results: regional BOLD-response and pattern component modelling (PCM). a Across-subjects’ mean (n= 5 subjects) positive BOLD-
responses shown as a function of spatial location in pre-, postVA- and postAV-adaptation phases across ROIs. The shaded areas indicate SEM. b Results of
the linear mixed-effects analysis of regional mean BOLD-response across ROIs: Loge-Bayes factors (LogeBF) for a specific target model as indicated by the
capital letter relative to the null model, which includes only the constant term (see Supplementary Methods: Plotting of regional mean BOLD-responses).
Top row: The spatial, decisional, and spatial + decisional uncertainty models without recalibration. Bottom row: The models factorially manipulate whether
the spatial and/or decisional component include recalibration. c PCM results—Spatial and/or decisional uncertainty models as predictors for fine-grained
BOLD-response patterns across ROIs. Across-subjects’ mean LogeBFs (±SEM, n= 5 subjects) and individual data points (circular markers) for each
predictor model. Top row: The spatial, decisional,- and spatial + decisional uncertainty models without recalibration relative to a null model that allows for
no similarity between activity patterns. Bottom row: The models factorially manipulate whether the spatial and/or decisional component accounts for
recalibration. Loge-Bayes factors are relative to the spatial + decisional uncertainty model (without recalibration) as the null model. Dash-dotted grey lines
indicate the relative LogeBF for the fully flexible models as noise ceiling estimated separately for the top and bottom row model comparisons (for details,
see Methods). S= spatial model without recalibration, D= decisional uncertainty model without recalibration, SR= spatial model with recalibration,
DR= decisional uncertainty model with recalibration32. Source data are provided as a Source Data file.
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not conclusive in HG. In hA, the combined model incorporating
recalibration of spatial and decisional coding outperformed more
parsimonious models. Conversely in IPS, IPL and FEF we
observed strong evidence for the models that expressed
recalibration in the decisional code (S+DR and SR+DR) relative
to those that did not (S+D and SR+D, see Supplementary

Table 5 for exact values). Again, in IPL and IPS the combined
model (SR+DR) outperformed the more parsimonious models.

In summary, our advanced model-based representational
analyses demonstrate that audiovisual adaptation relies on plastic
changes in spatial and decisional uncertainty representations.
While all regions (apart from HG) multiplexed spatial and
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decisional coding, their contributions arose with opposite
gradients along the dorsal auditory hierarchy. The spatial model
provided a better explanation for activations in HG and hA, the
decisional uncertainty model dominated in IPS, IPL and FEF.
Adding a decisional choice component (i.e. observers’ left/right
choices) substantially increased the model evidence only in IPS
for spatial coding in pre-adaptation runs and in IPS and hA for
recalibration (see Supplementary Note 2: Assessment of decisio-
nal choice model in fMRI and EEG, Supplementary Methods:
Comparison of response time and decisional choice models, and
Supplementary Tables S6 and S7). These results suggest that IPL
may be more involved in computing decisional uncertainty, while
IPS codes observers’ decisional spatial choice, which in turn
influences spatial coding in hA via feedback connectivity.
Crucially, only characterizing the representational geometry of
the neural representations enabled us to reveal that spatial and
decisional codes evolve with opposite gradients across regions.
This highlights the critical importance to move beyond simple
linear decoding analyses.

EEG: spatial encoding and recalibration indices. Using EEG, we
characterized how spatial and decisional coding evolved post-
stimulus. Consistent with our fMRI analysis, we first computed
the spatial encoding and recalibration indices for EEG activity
patterns across time. We trained linear support vector regression
models (SVR, LIBSVM27) on the EEG activity patterns of the pre-
adaptation trials in overlapping 50 ms time windows sliding from
−100 to 500 ms post-stimulus and generalized them to trials from
pre- and post-adaptation trials in a four-fold cross-validation
scheme. The cluster-based bootstrap test on the Fisher
z-transformed Pearson correlation coefficient between the true
and the decoded sound locations revealed a significant cluster
extending from 110 to 500 ms post-stimulus (one-tailed p= 0.01
corrected for multiple comparisons within the entire [−50 to 500]
ms window). The decoding accuracy was significantly better than
chance from about 110 ms post-stimulus, rose steadily and
peaked at about 355 ms (Fig. 6a). Likewise, we assessed the
recalibration index (RI) within the time window that showed a
significant effect of spatial encoding, i.e. [110–500] ms post-
stimulus. In the cluster-based bootstrap test the RI was sig-
nificantly positive in two clusters from [185–285] ms (one-tailed
p= 0.019) and [335–470] ms (one-tailed p= 0.005) post-stimulus
(Fig. 6b). Moreover, because previous ERP analyses suggested that
the N100 potential is affected by recalibration13, we performed a
temporal ROI analysis selectively on the EEG activity pattern
averaged within the N100 time window (i.e. [70–130] ms). This

temporal ROI analysis showed that the decoding accuracy was
significantly better than chance (mean ± SEM: 0.125 ± 0.059;
t(4)= 2.12, one-tailed p= 0.0406) and the RI was significantly
greater than zero (mean ± SEM: 5.963 ± 1.743; t(4)= 3.42, one-
tailed p= 0.0019).

Model-based EEG analysis: dissociating perceptual and deci-
sional codes. Combining EEG and PCM we investigated whether
spatial and decisional representations evolved with different time
courses. For this, we compared the null, spatial, decisional and
combined spatial + decisional uncertainty models as explanations
for EEG activity patterns over spatial locations in four consecutive
time windows: [50–150], [150–250], [250–350] and [350–450] ms
post-stimulus (Fig. 6c). From [50–150] ms the spatial model
alone provided a sufficient explanation of the EEG data; however,
including the decisional uncertainty model as well did explain
moderately more evidence. From [150–250] ms and beyond the
spatial + decisional uncertainty model performed better than the
spatial model with LogeBFs of at least 6.1 (Supplementary
Table 8). These results suggest that the decisional code becomes
progressively more important at later processing stages. This
representational gradient across post-stimulus time was also
apparent in our recalibration results (Fig. 6c, bottom row). Spatial
recalibration was expressed mainly via spatial coding (i.e. SR+D
and SR+DR better than S+D and S+DR by LogeBFs of at least
2.4, see Supplementary Table 8) from 150 to 250ms. From
250 ms onwards, recalibration relied jointly on spatial and deci-
sional codes (i.e. SR+DR explained the most variance con-
sistently), as in our fMRI results in later stages. Consistent with
the fMRI results, adding the decisional choice component
explained additional variance in the EEG activity patterns from
250 to 450ms (see Supplementary Note 2: Assessment of deci-
sional choice model in fMRI and EEG, Supplementary Methods:
Comparison of response time and decisional choice models, and
Supplementary Table 9). Collectively, our EEG results revealed
that spatial codes are more prominent in earlier processing stages
and decisional coding in later ones. Critically, at later stages
recalibration was expressed jointly in spatial and decisional codes.

Fusing EEG and fMRI in pattern component modelling. The
fMRI results revealed a mixture of spatial and decisional codes in
several ROIs across the dorsal processing hierarchy. To link fMRI
and EEG results more directly, we fused them in PCMs in which
the second-moment matrices of the BOLD-response activation
patterns in one of our five ROIs (i.e. HG, hA, IPS, IPL or FEF)
formed the predictor for the distribution of EEG activity patterns

Fig. 6 EEG results: multivariate decoding and pattern component modelling. a Time course of the spatial encoding index (across-subjects’ mean ± SEM,
n= 5 subjects, grey line and shaded area) and EEG evoked potentials (across-subjects’ mean, n= 5 subjects, averaged over central channels, see inset) for
the 7 spatial locations in pre-adaptation phase (±12°, ±5°, ±2° and 0° azimuth). b Time course of the recalibration index (across-subjects’ mean ± SEM,
n= 5 subjects, grey line and shaded area) and the EEG evoked potentials (across-subjects’ mean, n= 5 subjects, averaged over central channels, see inset)
for sounds presented at 0° azimuth for pre-, postVA-, and postAV-adaptation phases. Clusters underlying significant effects of spatial encoding (a) and
recalibration (b) (p < 0.05, one-sided, cluster corrected) are indicated by grey boxes. Areas within the dashed boxes indicate the a priori defined time
window focusing on early recalibration effects13. c PCM results—Spatial and/or decisional uncertainty models as predictors for EEG activity patterns across
four time windows. Across-subjects’ mean LogeBFs (±SEM, n= 5 subjects) and individual data points (circular markers) for each model. Top row: The
spatial, decisional, and spatial + decisional uncertainty models without recalibration relative to a null model that allows for no similarity between activity
patterns. Bottom row: The models factorially manipulate whether the spatial and/or decisional component accounts for recalibration. Loge-Bayes factors
are relative to the spatial + decisional uncertainty model (without recalibration). Dash-dotted grey lines indicate the relative LogeBF for the fully flexible
models as noise ceiling. S= spatial model, D= decisional uncertainty model, SR= spatial model with recalibration, DR= decisional uncertainty model with
recalibration. d PCM results—BOLD-response patterns from the five ROIs as predictors for EEG activity patterns across four time windows. Across-
subjects’ mean LogeBFs (±SEM, n= 5 subjects) and individual data points (circular markers) for each target model relative to the model using BOLD-
response patterns in HG as predictors. HG Heschl’s gyrus, hA higher auditory cortex, IPS intraparietal sulcus, IPL inferior parietal lobule, FEF frontal eye-
field. Source data are provided as a Source Data file.
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over sound locations. With these PCMs we asked when the
pattern similarity structure that we observed in a particular ROI is
expressed in the EEG activity patterns. This EEG-fMRI PCM
fusion approach is related to previous approaches that for
instance correlated the representational similarity matrices
obtained from fMRI for different ROIs from EEG across post-
stimulus time36. It can also be considered a form of EEG source
analysis where we try to explain the similarity structure over EEG
channels across time by source activation patterns obtained from
fMRI. Bayesian model comparison across these five fMRI-EEG
fusions PCMs confirmed a direct relationship between our fMRI
and EEG results (Fig. 6d). The PCM with hA (i.e. including
planum temporale) explained EEG activity patterns best
(exceeding other models by LogeBFs of at least 5.0, see Supple-
mentary Table 8) from [150–250] ms and the PCM with IPL from
250 ms onwards (exceeding other models by LogeBFs of at least
3.2, see Supplementary Table 8). We suspect that FEF has less
explanatory power because of its smaller size, thereby con-
tributing less to EEG scalp potentials. Collectively, combining
EEG and fMRI spatiotemporally resolved the influence of reca-
libration on the encoding of sound location and decisional
uncertainty.

Discussion
This study demonstrates that the brain recalibrates the senses by
flexibly adapting spatial and decisional codes, which are expressed
with opposite gradients along the auditory processing hierarchy.
Early activity patterns in planum temporale encode sound loca-
tions in a continuous space that dynamically shifts towards
misaligned visual inputs. Later activity patterns in frontoparietal
cortices mainly code choice-related uncertainty in line with these
representational changes.

Our behavioural results provide robust evidence that the brain
recalibrates auditory space to keep auditory and visual maps in co-
registration15–17. The point of subjective equality changed sig-
nificantly between left and right recalibration in every observer
(Fig. 2). Because the audiovisual adaptation phase used a non-spatial
task, this robust cross-sensory plasticity relied mainly on implicit
perceptual rather than choice-related mechanisms3,18,20,37–39.

Consistent with previous research in non-human primates, our
multivariate fMRI analyses showed that sound location can be
decoded from activity patterns in a widespread network including
primary auditory regions, planum temporale and frontoparietal
cortices7,19,24–26,40. Moreover, the activity patterns in all of these
regions adapted to changes in the sensory statistics as indicated
by recalibration indices and neurometric functions (Fig. 3a. b).
This widespread cross-sensory plasticity converges with our EEG
results showing persistent spatial encoding and recalibration
starting early with the auditory N1 component, generated in
primary and secondary auditory cortices41, and extending until
500 ms post-stimulus (Fig. 6a, b).

Critically, multidimensional scaling unravelled subtle repre-
sentational differences in this network of regions (see Fig. 3c).
While recalibration induced a constant representational shift in
planum temporale, a more complex similarity structure arose in
IPL and FEF. We investigated whether this complex representa-
tional geometry resulted from multiplexing of spatial and deci-
sional codes42 by comparing a spatial, a decisional, and a
combined spatial + decisional uncertainty model (Fig. 4). The
decisional uncertainty model computes choice-related uncertainty
based on the distance of the spatial estimates from the classifi-
cation boundary (see Fig. 4 and ref. 35). The spatial hemifield
model encodes sound location in the relative activity of two
subpopulations of neurons each broadly tuned either to the ipsi-
or contra-lateral hemifield6–9 - it is currently the leading model

for spatial coding in human auditory cortices. Yet, we applied it as
a model not only to auditory but also to frontoparietal areas7,25,
because its pattern similarity structure over the limited (i.e. [−12°
to 12°]) sound locations is indistinguishable from that of the
competing place code model (see Supplementary Fig. 3).

Crucially, Bayesian model comparison showed a functional
gradient along the auditory processing stream: the spatial model
provided a better explanation for the regional mean and fine-scale
activation patterns in planum temporale, while the decisional
uncertainty model performed better in frontoparietal cortices. As
shown in Fig. 5a, the regional BOLD-response increased linearly
for stimuli along the azimuth in planum temporale, but followed an
inverted U-shaped function that adapts to audiovisual conflicts in
frontoparietal cortices (Fig. 5b top and bottom row)7,19,24–26,43,44.
Likewise, the recalibration of the fine-scale activation patterns was
better captured by the spatial model in planum temporale, but by
the decisional uncertainty model in frontoparietal cortices. Yet,
despite this predominance of decisional coding, IPS, IPL and even
FEF multiplexed spatial and decisional patterns (Fig. 5c top row).

This spatial-decisional gradient across the cortical hierarchy
was mirrored in their temporal evolutions. Recalibration of spa-
tial coding was reflected in early EEG activity patterns ([150–250]
ms), while adaptation of decisional uncertainty was more pro-
minent in later activity (after 250 ms, Fig. 6c bottom row). We
could even directly link the functional gradients across time and
regions by fusing fMRI and EEG via pattern component model-
ling: the BOLD-response patterns in hA predicted EEG activity
patterns mainly at early ([150–250] ms) stages and IPL at later
stages from 250 ms onwards (Fig. 6d).

Collectively, our fMRI and EEG results demonstrate that the
brain adapts flexibly to the changing statistics of the environment.
They also highlight the critical importance to move beyond
decoding analyses, as the ability to decode a feature value (e.g.
sound location) from activity patterns does not imply that this
feature is well represented32. Instead, in order to define the fea-
tures or mixtures of features (e.g. spatial, decisional) that are
encoded in activations, we need to characterize the fine-grained
representational geometry and assess the explanatory power of
different sets of features via model comparison. Only the latter
was able to show that later recalibration effects in frontoparietal
cortices reflect mainly choice-related rather than genuine spatial
coding. The expression of recalibration in distinct spatial and
decisional codes opens the intriguing possibility that recalibration
may not always impact both codes together. Instead, the repre-
sentations and neural circuitries involved in recalibration may
depend on the particular task and/or the duration of recalibra-
tion. For instance, while our study focused on implicit long-term
recalibration using a non-spatial task, other studies have shown
rapid recalibration effects when observers performed spatial
localization tasks during the adaptation and/or post-adaptation
phases18,20,38,39. It remains unknown whether these short-term
recalibration effects involve plastic changes in the spatial repre-
sentations or selectively alter choice-related activity. In line with
this notion, accumulating research suggests that recalibration
relies on multiple mechanisms that operate over different
timescales12,45–47. Future studies thus need to disentangle the
impact of recalibration duration and task on spatial and deci-
sional coding.

So far, we have emphasized that spatial and decisional codes
are expressed with opposite gradients across the cortical hierarchy
and post-stimulus time. Yet, Bayesian model comparison also
indicated that the combined spatial + decisional uncertainty
model significantly outperformed the more parsimonious deci-
sional or spatial models throughout the cortical hierarchy. Like-
wise, a benefit was observed for the pattern component models in
which recalibration was expressed in both spatial and decisional
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codes. This mixture of spatial and decisional codes may result
from true multiplexing of multiple neural codes concurrently
within the same region or from a methodological limitation of
fMRI, namely the sluggishness of the BOLD-response whereby
neural codes that are present at different latencies nevertheless
mix in the BOLD-response patterns. The EEG-fMRI fusion
approach suggests that early neural activity until 250 ms is
dominated by spatial coding in higher-order auditory cortices. By
contrast, later neural activity reflects a mixture of spatial and
decisional coding. We therefore suggest that later activity in all
higher-order cortical regions (i.e. hA, IPS, IPL and FEF) multi-
plexed perceptual and decisional codes and adapt both codes
to recalibrate the senses42. Moreover, because multiplexing
of spatial and decisional codes arose mainly later from 250 ms
post-stimulus, the coding of decisional uncertainty in auditory
cortices (hA) is likely to reflect top-down influences from fron-
toparietal areas48,49.

In conclusion, our results show that audiovisual adaptation relies
on spatial and decisional coding. Crucially, the expression of spatial
and decisional codes evolves with different time courses and
opposite gradients along the auditory processing hierarchy. Early
neural activity in planum temporale encoded sound location within
a continuous auditory space. Later frontoparietal activity mainly
encoded observers’ decisional uncertainty that flexibly adapts in
accordance with these transformations of auditory space.

Methods
This study was conducted in accordance with the Declaration of Helsinki and
approved by the research ethics committee of the University of Birmingham
(approval number: ERN_11_0470AP4).

Participants. Fifteen participants (10 females, mean age= 22.1; SD= 4.1) parti-
cipated in the psychophysics study. Five of those participants (4 females, mean
age= 22.2; SD= 5.1, one author of the study, A.M.) completed the fMRI and EEG
experiments (for full selection criteria see Supplementary Methods: Participants).
All participants had no history of neurological or psychiatric illnesses, had a
normal or corrected-to-normal vision and had normal hearing. Participants gave
informed written consent to participate in the study and were compensated with £6
per hour for behavioural and £8 per hour for fMRI and EEG sessions.

Stimuli. The auditory stimulus consisted of a burst of white noise with a duration
of 50 ms and 5 ms on/off ramp delivered at a 75 dB sound pressure level. To create
a virtual auditory spatial signal, the noise was convolved with spatially specific
head-related transfer functions thereby providing both binaural and monaural cues
for sound location50. Head-related transfer functions from the available locations
in the MIT database (http://sound.media.mit.edu/resources/KEMAR.html) were
interpolated to the desired spatial locations. For the EEG experiment, scanner
background noise was superimposed on the spatial sound stimuli to match the task
environment of the fMRI experiment. The visual stimulus was a cloud of 15 white
dots (diameter= 0.4° visual angle) sampled from a bivariate Gaussian distribution
with a vertical and horizontal standard deviation of 1.5° and a duration of 50 ms
presented on a dark grey background (90% contrast) in synchrony with the
auditory stimuli.

Experimental design and procedure. The psychophysics, fMRI, and EEG
experiments used the same design including three phases: (i) unisensory auditory
pre-adaptation, (ii) audiovisual adaptation (AV- or VA-adaptation) and (iii) uni-
sensory auditory post-adaptation (postAV-adaptation or postVA-adaptation)
(Fig. 1b). Psychophysics, fMRI, EEG included 2 days each for left (i.e. VA) and
2 days for right (i.e. AV) adaptation (except for one participant who completed
EEG over 2 days), i.e. 12 days of experimental testing + 1 day pre-screening for
each participant. The order of left and right adaptation was counterbalanced across
participants. Throughout all experiments, participants fixated on a central fixation
cross (0.5° diameter).

Auditory pre- and post-adaptation. In unisensory pre- and post-adaptation phases
(Fig. 1b), participants were presented with auditory stimuli that were sampled
uniformly from 7 spatial locations (±12°, ±5°, ±2° and 0° visual angle) along the
azimuth (stimulus onset asynchrony (SOA)= 2000 ± 200 ms jitter). Participants
performed a two-alternative forced-choice left-right spatial classification task
explicitly only on a fraction of trials (22%), the so-called ‘response trials’, which
were randomly interspersed and indicated 500 ms after sound onset by a brief (i.e.
200 ms duration) dimming of the fixation cross to 55% of its initial contrast. The

fMRI decoding was based only on the non-response trials to minimize motor
confounds.

Participants indicated their left-right spatial classification response by pressing
one of two buttons with the index or middle fingers of their left or right hand. The
response hand was alternated over runs within a day to control for potential motor
confounds (see fMRI multivariate decoding section below). The order of left and
right response hands was counterbalanced across days (for number of trials, runs
etc., see Supplementary Methods: Auditory pre- and post-adaptation, Organization
of each testing day).

Audiovisual adaptation. In the audiovisual adaptation phase, participants were
presented with spatially disparate (±15° visual angle) audiovisual stimuli (SOA=
500 ms): the visual stimulus was uniformly sampled from three locations along the
azimuth (i.e. −5°, 0°, 5°). On separate days, the visual stimulus was spatially shifted
by 15° either to the left (i.e. VA-adaptation) or to the right (i.e. AV-adaptation)
with respect to the auditory stimulus. Hence, we included the following audiovisual
stimulus location pairs: [A=−20°, V=−5°], [A=−15°, V= 0°], [A=−10°,
V= 5°] in (right) AV-adaptation phases and [A= 10°, V=−5°], [A= 15°,
V= 0°], [A= 20°, V= 5°] in (left) VA-adaptation phases. The locations of the
audiovisual stimulus pairs were fixed within mini-blocks of 5 (psychophysics, i.e.
duration of 2.5 s) or 20 (fMRI, EEG, i.e. duration of 10 s) consecutive trials.

Participants detected slightly dimmer visual stimuli (80% of normal contrast),
pseudorandomly interspersed on 10% of the trials (i.e. so-called ‘response trials’).
This non-spatial task ensures the maintenance of participants’ attention and
introduces audiovisual recalibration at the perceptual rather than decisional or
motor response level. To allow sufficient time for responding (given the short SOA
of 500 ms), we ensured that each response trial was followed by at least three
consecutive non-response trials (for further details see Supplementary Methods:
Audiovisual adaptation, Organization of each testing day).

Experimental setup. In all experiments, visual and auditory stimuli were presented
using Psychtoolbox version 3.0.1151,52 under MATLAB R2011b (MathWorks Inc.)
on a MacBook Pro running Mac OSX 10.6.8 (Apple Inc.). In the psychophysics and
EEG experiments, participants were seated at a desk with their heads rested on a
chinrest. Two accessory rods were mounted on the chinrest serving as forehead rest
and allowing stable and reliable head positioning. Visual stimuli were presented at
a viewing distance of 60 cm via a gamma-corrected 24” LCD monitor (ProLite
B2483HS, iiyama Corp.) with a resolution of 1920 × 1080 pixels at a frame rate of
60 Hz. Auditory stimuli were delivered via circumaural headphones (HD 280 Pro,
Sennheiser electronic GmbH & Co. KG) in the psychophysics experiment and via
in-ear earphones (E-A-RTONE GOLD, 3M Company Auditory Systems) in the
EEG experiment. Participants used a standard USB keyboard for responding. In the
fMRI experiment, visual stimuli were back-projected to a plexiglass screen using a
D-ILA projector (DLA-SX21, JVC, JVCKENWOOD UK Ltd.) with a resolution of
1400 × 1050 pixels at a frame rate of 60 Hz. The screen was visible to the subject
through a mirror mounted on the magnetic resonance (MR) head coil and the eye-
to-screen distance was 68 cm. Auditory stimuli were delivered via a pair of MR-
compatible headphones (MR Confon HP-VS03, Cambridge Research Systems Ltd).
Participants responded using a two-button MR-compatible keypad (LXPAD
1 × 5–10M, NATA Technologies). Exact audiovisual onset timing in adaptation
trials was confirmed by recording visual and auditory signals concurrently with a
photodiode and a microphone.

Eye movement recording. Eye movement recordings were calibrated in the
recommended field of view (32° horizontally and 24° vertically) for the EyeLink
1000 Plus system (SR Research Ltd.) with the desktop mount at a sampling rate of
2000 Hz. Eye position data were online parsed into events (saccade, fixation, eye
blink) using the EyeLink 1000 Plus software. The ‘cognitive configuration’ was
used for saccade detection (velocity threshold= 30°/sec, acceleration threshold=
8000°/sec2, motion threshold= 0.15°) with an additional criterion of radial
amplitude >1°. Fixation position was post-hoc offset corrected. In the fMRI
experiment, precise positioning of participants’ heads inside the scanner bore was
critical for the sensitive measurement of spatial recalibration, so high-quality eye
movement recordings were not possible.

Behavioural analysis for psychophysics, fMRI and EEG experiments
Signal detection measures. Participants responded only on a fraction of ‘response
trials’, i.e. 22% in auditory pre- and post-adaptation and 10% in AV- and VA-
adaptation. This enabled us to assess their performance with the signal sensitivity
measure d’:

d0 ¼ Z phit
� �� Z pfalse alarm

� � ð1Þ

where phit and pfalse alarm are the hit and false alarm rates, respectively. Hits are
‘response trials’, on which observers gave a response. False alarms are ‘non-
response trials’, in which observers gave a response. 100% hit rate and 0% false
alarm rate were approximated by 99.999% and 0.001%, respectively, to enable the
calculation of Z-scores.
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Psychometric functions. For the pre-, postVA- and postAV-adaptation phases we
fitted cumulative Gaussians as psychometric functions (PF) to the percentage
‘perceived right’ responses on the ‘response trials’ as a function of stimulus location
(±12°, ±5°, ±2° and 0°) (see Fig. 2). To account for potential overdispersion in the
data across sessions, we used the beta-binomial model53,54. The beta-binomial
model assumes that the percentage of right responses at a particular stimulus
location is not fixed throughout the entire experiment but a beta-distributed ran-
dom variable with variance determined by the scaling factor η (between 0 and 1). The
models were fitted individually to the behavioural data of each participant with
maximum-likelihood estimation55 and using the beta-binomial model56,57. To enable
reliable parameter estimates for each participant, we employed a multi-condition
fitting using the following constraints: (i) the just noticeable differences (JND or slope
parameter) were set equal across all conditions (i.e. pre-, postVA- and postAV-
adaptation phases); (ii) guess and lapse rates were set equal to each other and (iii)
equal across all conditions. Furthermore, (iv) we constrained the fitted guess and
lapse rate parameters to be within 0 and 0.1 and (v) the variance of the beta-
distribution (i.e. η in the beta-binomial model) was set equal across all conditions.

For statistical inference, we assessed the goodness of fit of the cumulative
Gaussian for each condition and participant using a likelihood ratio test. This
likelihood ratio test compares the likelihood of participants’ responses given the
model that is constrained by a cumulative Gaussian function (i.e. our ‘target
model’) to the likelihood given by a so-called ‘saturated model’ that models
observers’ responses with one parameter for each stimulus location in each
condition. The resulting likelihood ratio for the original dataset is then compared
with a null distribution of likelihood ratios generated by parametrically
bootstrapping the data (5000×) from the ‘target model’ fitted to the original dataset
and refitting the ‘target’ and ‘saturated’ models. Since the likelihood ratio for the
original dataset was not smaller in any of the participants than 5% of the
parametrically bootstrapped likelihood ratios (i.e. p > 0.05), we inferred sufficient
goodness of fit for all participants.

Next, we assessed whether AV- and VA-adaptation induced a shift in
participants’ perceived auditory location by comparing a ‘static’ model, which
constrains PSEs to be equal for pre-, postVA- and postAV-adaptation, with a
‘recalibration’ model, which includes three PSE values for the pre-, postVA- and
postAV-adaptation PFs. For each participant and model, we calculated the Akaike
Information Criterion (AIC28) according to the following formula:

AIC ¼ logeL� N ð2Þ
where L stands for the likelihood of the model given the data, N is the number of
parameters, and loge is the natural logarithm. The summed AIC values over
participants for each model provided an approximation to the model evidence. We
performed Bayesian model comparison at the level of the random effect as
implemented in SPM12 to obtain the protected exceedance probability for the
candidate models58. A uniform prior was used over candidate models.

fMRI data acquisition and analysis
fMRI data acquisition. We used a 3 T Philips Achieva scanner to acquire both T1-
weighted anatomical images (TR/TE/TI, 7.4/3.5/min. 989 ms; 176 slices; image
matrix, 256 × 256; spatial resolution, 1 × 1 × 1 mm3 voxels) and T2*-weighted
echo-planar images (EPI) with blood oxygenation level-dependent (BOLD) con-
trast (fast field echo; TR/TE, 2800/40 ms; 38 axial slices acquired in ascending
direction; image matrix, 76 × 75; slice thickness, 2.5 mm; interslice gap, 0.5 mm;
spatial resolution, 3 × 3 × 3 mm3 voxels). On each of the 4 days we acquired five
auditory pre-adaptation runs and four audiovisual adaptation runs. Each fMRI run
started and ended with 10 s fixation and the first 4 volumes of each run were
discarded to allow for T1 equilibration effects.

Pre-processing and general linear model. The data were analysed with Statistical
Parametric Mapping (SPM12; http://www.fil.ion.ucl.ac.uk/spm/59). Scans from
each participant were realigned using the first as a reference, unwarped and slice-
time corrected. The time series in each voxel was high-pass filtered to 1/128 Hz.
The EPI images were spatially smoothed with a Gaussian kernel of 3 mm FWHM
and analysed in native space. The data were modelled in a mixed event/block
fashion with regressors entered into the design matrix after convolving the unit
impulse or the block with a canonical hemodynamic response function and its first
temporal derivative. In the unisensory auditory pre- and post-adaptation phases,
unisensory sound stimuli were modelled as events separately for each of our 7
(sound location) × 2 (response vs. non-response) × 3 (pre, post-VA, post-AV)
conditions. In the AV- and VA-adaptation phases, AV stimulus presentations were
modelled as blocks separately for the 3 (visual locations) × 2 (VA vs. AV-adap-
tation) conditions. In addition, we modelled all response trials during the adap-
tation phase with a single regressor to account for motor responses. Realignment
parameters were included as nuisance covariates. Condition-specific effects for each
subject were estimated according to the general linear model (GLM). To minimise
confounds of motor response, we limited all subsequent fMRI analyses to the
parameter estimates pertaining to the ‘non-response’ trials.

For the BOLD-response analysis, we computed contrast images comparing
auditory stimulus at a particular location > fixation in each subject (averaged over
runs) resulting in 21 contrast images (i.e. 7 (sound location) × 3 (pre, postVA,
postAV)). Moreover, we computed a contrast and associated t-image that

compared all 21 sound conditions relative to fixation baseline (for identification of
sound-responsive voxels).

For the multivariate decoding and representational similarity analyses, we
applied multivariate spatial noise normalization to the parameter estimates using
the noise covariance matrix obtained from the residuals of the GLM and the
optimal shrinkage method60 and finally performed Euclidean normalization.

Regions of interest for fMRI analysis. We defined five regions of interest (ROI,
combined from two hemispheres) that have previously been implicated in auditory
spatial processing based on neurophysiology and neuroimaging research10,24,25.
Heschl’s gyrus (HG), higher auditory cortex (hA) and inferior parietal lobule (IPL)
were defined using the following parcellations of the Destrieux atlas of Freesurfer
5.3.061: (i) HG: Heschl’s gyrus and anterior transverse temporal gyrus; (ii) hA:
higher auditory cortex, i.e. transverse temporal sulcus, planum temporale and
posterior ramus of the lateral sulcus; (iii) IPL: inferior parietal lobule, i.e., supra-
marginal gyrus and inferior part of the postcentral sulcus. The intraparietal sulcus
(IPS) and frontal eye-field (FEF) were defined using the following group-level
retinotopic probabilistic maps62: (iv) IPS: IPS0, IPS1, IPS2, IPS3, IPS4, IPS5 and
SPL1; (v) FEF: hFEF. Because previous studies of audiovisual spatial integration
suggested relatively similar auditory influences on several IPS subfields63–66 we
pooled over them for this analysis. All probabilistic maps were thresholded to a
probability of 0.1 (i.e. probability that a vertex belongs to a particular ROI) and
inverse normalized into each participant’s native space.

fMRI multivariate decoding—spatial encoding and recalibration indices. We
extracted the voxel response patterns in a particular ROI from the pre-whitened
and normalized parameter estimate images pertaining to the magnitude of the
BOLD-response for each condition and run. To avoid motor confounds, we used
the parameter estimate images only from the ‘non-response trials’. In a four-fold
stratified cross-validation procedure, we trained support vector regression models
(C= 1, ν= 0.5, LIBSVM 3.2027) to learn the mapping from the condition-specific
fMRI response patterns (i.e. examples) to external spatial locations (i.e. labels)
using examples selectively from the unisensory auditory pre-adaptation runs of all
but one fold64,65. This learnt mapping was used to decode the spatial locations
from the BOLD-response patterns of the remaining pre-adaptation fold and all
postVA- and postAV-adaptation examples (acquired in separate runs).

To determine whether a ROI encodes auditory spatial representations, we
computed the Pearson correlation coefficients between the true and the decoded
auditory locations for the pre-adaptation runs for each participant as a ‘spatial
encoding index’.

To determine whether auditory spatial representations in a region of interest are
recalibrated by misaligned visual signals, we binarized the predicted auditory
locations into left vs. right predictions and computed the difference in the fraction
of ‘decoded right responses’ (i.e. positive azimuth) between auditory postVA- and
postAV-adaptation phases as ‘recalibration index’ (RI).

RI ¼ p 0decoded right0jpostAV examples
� �� p 0decoded right0jpostVA examples

� �
ð3Þ

Importantly, postVA- and postAV-adaptation phases were matched in terms of
time, exposure, training and other non-specific effects.
To allow for generalization at the population level, we entered the subject-specific
Fisher z-transformed spatial encoding and recalibration indices into separate
bootstrap-based one-sample t-tests against zero at the group level67. Briefly, an
empirical null distribution of t-values was generated from the data by resampling
the subject-specific values with replacement, subtracting the across-subjects’ mean
and computing the one-sample t-statistic for each bootstrap sample. A one-tailed
p-value was computed based on the proportion of t-values in the bootstrapped
t-distribution greater than the observed t-value. We used the Benjamini-Hochberg
algorithm68 to correct for false discovery rate (FDR) across ROIs.

fMRI multivariate decoding—neurometric functions. Because of the lower signal-to-
noise ratio of fMRI data and decoding analyses, we fitted cumulative Gaussians as
neurometric functions (NF) in each ROI to the percentage of ‘decoded right’ (i.e.
positive azimuth) averaged across participants as a function of stimulus location
(for similar motivation and analysis strategy, see ref. 63)

Consistent with the behavioural analysis we assessed whether AV- and VA-
adaptation induced a shift in the decoded location of the unisensory auditory
stimuli by comparing a ‘static’ model with a ‘recalibration’ model using the Akaike
Information Criterion (AIC28, for details see Methods: Psychometric functions and
Supplementary Methods: fMRI multivariate decoding—neurometric functions).

fMRI multivariate pattern analysis—representational dissimilarity analyses and
multidimensional scaling. We generated 21 condition-specific contrast images for
the 7 auditory spatial locations × 3 (pre-, postVA-, and postAV-adaptation) by
averaging parameter estimate images across fMRI runs for each participant. We
then characterized the geometry of spatial representations using representational
dissimilarity matrices (RDMs30) based on the Mahalanobis distance for each
participant and each ROI separately for pre-adaptation as well as postVA- and
postAV-adaptation phases (see Supplementary Methods: fMRI multivariate pattern
analysis—representational dissimilarity analyses and multidimensional scaling).
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Using non-classical multidimensional scaling (MDS)31 with non-metric scaling, we
projected the group-level RDMs (i.e. averaged across participants) onto a one-
dimensional space (‘reflecting’ spatial dimension along the azimuth). To quantify
how well the MDS projection of neural representations corresponds to the relative
physical positions of stimuli, we computed the Spearman’s rank-correlation
between the MDS projections and the corresponding spatial locations separately for
pre- and post-adaptation phases in each ROI. As the MDS projection only reflects
the relative distance between neural representations, it is agnostic about the
absolute orientation of stimuli in physical space (i.e. whether ‘left’ or ‘right’ is
associated with a negative or positive sign). Therefore, only the magnitude, not the
sign of the rank-correlation is meaningful, hence we report the absolute value of
rank-correlation coefficients. For illustration purposes, we flipped the MDS pro-
jections around zero consistently for all conditions in ROIs where the correlation
between MDS projections and corresponding spatial locations was negative.

EEG data acquisition and analysis
EEG data acquisition. Continuous EEG signals were recorded from 64 channels
using Ag/AgCl active electrodes arranged in 10–20 layout (ActiCap, Brain Products
GmbH, Gilching, Germany) at a sampling rate of 1000 Hz with FCz as reference.
Channel impedances were kept below 10 kΩ.

EEG pre-processing. Pre-processing was performed with the FieldTrip toolbox69

(http://www.fieldtriptoolbox.org/). Raw data were high pass filtered at 0.1 Hz,
inspected for bad channels, re-referenced to the average of all channels, and low pass
filtered at 45Hz. Bad channels were identified by visual inspection, rejected, and
interpolated using spherical spline interpolation70 based on the neighbouring chan-
nels (across-subjects’ mean number of rejected channels= 1.5, min= 0, max= 4).
Trial epochs for the unisensory auditory pre-adaptation and the auditory post-
adaptation conditions were extracted between [−100 to 500] ms post-stimulus (i.e.
the onset of the response cue on the response trials), baseline corrected and down-
sampled to 200 Hz. Epochs containing artefacts within the time window of interest
(i.e. between [0–500] ms post-stimulus) were identified based on visual inspection
and rejected. Furthermore, based on eyetracking data, trials were rejected if they (i)
contained eye blinks or (ii) saccades or (iii) the eye gaze was away from the fixation
cross by more than 2 degrees (% rejected trials across-subjects’ mean ± SEM:
8.2 ± 1.0%). Grand average ERPs were computed by averaging all trials for each
condition first within each participant and then across participants.

For the multivariate analysis, we applied spatial multivariate noise
normalization to the individual trials using a noise covariance matrix estimated
separately for each time point and the optimal shrinkage method60. Furthermore,
the EEG activity patterns were divided by their Euclidean norm separately for each
time point and trial for normalization. Since the EEG responses on trials with and
without behavioural response were identical until 500 ms post-stimulus, we pooled
over response and no response trials in all EEG analyses.

EEG multivariate decoding—spatial encoding and recalibration indices. Similar to
our fMRI analysis, we trained a SVR in a four-fold stratified cross-validation
(C= 1, ν= 0.527) to learn the mapping from evoked potentials (averages of 16
randomly sampled trials) of the pre-adaptation run to external auditory space over
50 ms time windows, shifting in increments of 5 ms, from −100 to 500 ms post-
stimulus. The learnt mapping was used to decode the sound location from the EEG
activity patterns of the pre-adaptation examples in the remaining fold and all post-
adaptation examples. To minimize sampling variance, we averaged the decoded
locations across 50 repetitions of this cross-validation procedure to compute the
‘spatial encoding’ and ‘recalibration’ indices for each 50 ms window. At the level of
the random effect, we report results from a bootstrap-based t-test67 against zero
corrected for multiple comparisons across [−50 to 500] ms using a cluster-based
correction with an auxiliary cluster-defining height threshold of p < 0.05
uncorrected71.

Based on our a priori hypothesis that spatial location is encoded in the N100
potential13, we also performed bootstrap-based t-tests on the spatial encoding and
recalibration indices obtained from evoked potentials averaged within a [70–130]
ms window.

Spatial hemifield and decisional uncertainty models for fMRI and EEG. We
assessed a spatial and a decisional encoding model as explanations for the regional
mean BOLD-response and fine-scale fMRI/EEG patterns.

Spatial hemifield model. The hemifield model6–9 encodes sound location in the
relative activity of two subpopulations of neurons each broadly tuned either to the
ipsi- or contra-lateral hemifield (Fig. 4a). We simulated 360 neurons with broad
Gaussian tuning functions. The standard deviation was set to 64°. The means of the
tuning functions were sampled uniformly from 80° to 100° for the neuronal
population tuned to the contra-lateral hemifield and from −80° to −100° azimuth
for the neuronal population tuned to the ipsilateral hemifield. Consistent with
previous research8 the ratio of the ipsi- and contralaterally tuned neurons was set
to 30%/70% (see Fig. 4a, Supplementary Fig. 3a). Critically, additional simulations
indicated that the ratio of ipsi/contralaterally tuned neurons affected only the
predictions for the regional mean BOLD-responses but not those for the pattern

similarity structure. In fact, the pattern similarity structure is nearly identical for
simulations with the ratio between ipsi/contralaterally tuned neurons set to 30%/
70% and 50%/50% (see Supplementary Methods: Comparison of spatial hemifield
and place code models).

For the pre-adaptation conditions we sampled neural responses from the seven
sound locations in our paradigm. For the post-adaptation conditions, we sampled
again from these seven locations for the non-recalibration model. For the
recalibration model we sampled the neural responses from the above locations
shifted by 2.3° to the right (postVA-adaptation) or left (postAV-adaptation). The
shift by 2.3° was calculated as the difference between the across-subjects’ mean PSE
values in postVA- and postAV-adaptation phases from the psychometric functions.

Decisional uncertainty model. In the decisional uncertainty model the activity of a
neuron encodes observers’ choice-related uncertainty that depends non-linearly on
the distance between observers’ spatial estimates and their left-right spatial clas-
sification boundary35 according to:

Decisional uncertainty ¼ F xjμ; σ� �� 0:5
�� ��� 0:5
�� ��

0:5
ð4Þ

where F(x| μ, σ) is the cumulative normal distribution function with mean μ and
standard deviation σ evaluated at spatial location x:

F xjμ; σ� � ¼ 1

σ
ffiffiffiffiffi
2π

p
Z x

�1
e
� k�μð Þ2

2σ2 dk ð5Þ

The standard deviations of the cumulative normal distribution were set to 10° and
their means were uniformly sampled between −1° and +1° (see Fig. 4a). We
simulated responses from 360 neurons. Exactly as for the spatial model, we
sampled neural responses from the seven sound locations for the pre-adaptation
conditions and the post-adaptation conditions for the non-recalibration model. For
the recalibration model we sampled the neural responses from the above locations
shifted by 2.3° to the right (postVA-adaptation) or left (postAV-adaptation).

As shown in Fig. 4b, c, the spatial and decisional uncertainty models make
distinct predictions for the regional mean BOLD-response and the pattern
similarity structure over the 21 conditions= 7 spatial locations × 3 phases (pre,
postVA, postAV).

While decisional uncertainty depends on the distance of the noisy signal from
the decision boundary in signal detection theory models (see above),
experimentally it is closely related to observers’ confidence and response
times72,73—although differences between decisional uncertainty in first-order
perceptual judgments and explicit confidence judgment are well-established74,75.
We have therefore assessed to what extent the decisional uncertainty as computed
above is related to observers’ response times for spatial locations during the pre-
and post-adaptation phases. As expected, the predictions for the spatial locations in
pre- and post-adaptation phases are highly correlated between the decisional
uncertainty model and the response time models (Spearman’s rank-correlation
(RS): RS(19)= 0.95, p < 0.001, see Supplementary Note 3: Pairwise correlations
between the predictions of the spatial, decisional uncertainty, decisional choice and
response time models; Response time analysis; Supplementary Figs. 2 and 4).

Regional mean BOLD-response: spatial and decisional linear mixed-effects models.
Regional mean BOLD-response: For each of the 2 (hemisphere: left, right) × 5
(ROI: HG, hA, IPS, IPL, FEF) regions we selected the 20 most reliably responsive
voxels, i.e. with the greatest t-values for all unisensory sound conditions relative to
fixation. For each of those 10 regions we extracted the BOLD-response magnitude
for each of the 7 locations × 3 phases (pre-, postAV- and postVA-adaptation) and
formed the regional mean.

Linear mixed-effects modelling: To account for lateralization effects7, we
performed separate analyses for each region and hemisphere. Separately for each
hemisphere we used the spatial (resp. decisional) model to generate predicted
regional mean BOLD-responses for each of the 21 conditions= 7 locations × 3
phases (pre-, postAV- and postVA-adaptation) by averaging activations of
360 simulated neurons.

We generated seven linear mixed-effects (LME) models that varied in their fixed
effects predictors:

● Null LME: single intercept term.
● Spatial LME model (S): predictor from the spatial encoding model without

recalibration and intercept term.
● Decisional LME model (D): predictor from the decisional uncertainty

model without recalibration and intercept term.

The remaining LME models included spatial, decisional and intercept terms (i.e.
three fixed effects regressors) and factorially manipulated whether the spatial and/
or the decisional predictor modelled recalibration:

● (S+D) Spatial without recalibration + decisional without recalibration
● (SR+D) Spatial with recalibration + decisional without recalibration,
● (S+DR) Spatial without recalibration + decisional with recalibration
● (SR+DR) Spatial with recalibration + decisional with recalibration.

Subject-level effects were included as random effects. For each of the 2
hemispheres × 5 ROIs we fitted (1) the Null, S, D, S+D LME models to the pre-
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adaptation phase (i.e. 7 conditions, see Fig. 5b top row) and (2) the Null, S+D,
SR+D, S+DR, SR+DR LME models to the pre- and post-adaptation phase (i.e.
21 conditions, see Fig. 5b bottom row). All LME models were fitted using
maximum-likelihood estimation and the Bayesian information criterion (BIC) was
computed as76:

BIC ¼ logeL� 1
2
MlogeN ð6Þ

where L stands for the likelihood of the model given the data, M is the number of
parameters, N is the number of observations, and loge is the natural logarithm. The
figures show the natural logarithm of the Bayes factors (Loge-Bayes factors)
averaged across hemispheres for LME models relative to the null LME (i.e.
BICmodel− BICnull; for visualization details see Supplementary Methods: Plotting of
regional mean BOLD-responses).

Multivariate pattern: pattern component modelling of fMRI and EEG data. To
assess whether spatial and/or decisional uncertainty models can explain the fine-
scale fMRI or EEG activity patterns across the 7 (sound location) × 3 (pre, post-
VA, post-AV)= 21 conditions, we combined Pattern Component Modelling
(PCM32, https://github.com/jdiedrichsen/pcm_toolbox) and Bayesian model
comparison. Like the more widely used representational similarity analyses, pattern
component modelling allows one to investigate whether specific representational
structures—as implied for instance by the spatial or decisional uncertainty model—
are expressed in fMRI or EEG activity patterns. Critically, PCM goes beyond
standard representational similarity analyses by allowing us to assess arbitrary
mixtures of representational components such as a combined spatial + decisional
uncertainty model (i.e. with unknown mixture weights, for further information see
Supplementary Methods: Multivariate pattern:—pattern component modelling of
fMRI and EEG data).

Consistent with our LME analysis, we generated second-moment matrices
(‘pattern components’) as predictors for PCM based on the activations of
360 simulated neurons from the spatial and decisional uncertainty models,
respectively.

We compared the following PCM models for fMRI and EEG data:
Null PCM: all conditions are independent (i.e. the second-moment matrix is the

identity matrix).
Spatial PCM (S): activity patterns generated by the spatial model without

recalibration.
Decisional PCM (D): activity patterns generated by the decisional uncertainty

model without recalibration.
Combined (spatial+ decisional) PCMs: activity patterns are a weighted linear

combination of the patterns generated by the spatial and the decisional uncertainty
model. We factorially manipulated whether the spatial and/or decisional
uncertainty model accommodates audiovisual recalibration:

● (S+D) spatial component without recalibration and decisional component
without recalibration.

● (SR+D) spatial component with recalibration and decisional component
without recalibration.

● (S+DR) spatial component without recalibration and decisional compo-
nent with recalibration.

● (SR+DR) spatial component with recalibration and decisional component
with recalibration.

Free (i.e. fully flexible) PCM imposes no constraints on the second-moment
matrix and provides an upper benchmark. If a model performs at least as good as
the cross-validated free PCM, it is sufficiently complex to capture all consistent
variations in the data32.

fMRI and EEG fusion PCMs: To assess whether the fMRI activation patterns
evolve with different time courses in EEG, we computed five PCMs each including
only one pattern component generated from the BOLD-response patterns of HG,
hA, IPS, IPL and FEF.

Model estimation and comparison: In our fMRI analysis these PCM models
were applied to the pre-whitened parameter estimates from the first-level GLM
analysis separately for each of the 5 fMRI ROIs (i.e. HG, hA, IPS, IPL, FEF pooled
over both hemispheres). In our EEG analysis they were applied to pre-whitened
evoked EEG potentials averaged within individual runs (20 trials) and within each
of the 4 EEG time windows (i.e. [50–150] ms, [150–250] ms, [250–350] ms,
[350–450] ms). Consistent with our LME analysis, we fitted (1) the Null, S, D,
S+D PCMs to the pre-adaptation phase (i.e. 7 conditions, see Fig. 5c top row and
Fig. 6c top row) and (2) the Null, S+D, SR+D, S+DR, SR+DR PCMs to the pre-
and post-adaptation phase (i.e. 21 conditions, see Fig. 5c bottom row and 6c
bottom row). We estimated the parameters of the PCM models in a leave-one-
subject-out cross-validation scheme at the group level32. Because the parameter
estimates were computed relative to the common baseline, we modelled the run
mean as a fixed effect in fMRI when comparing the spatial, decisional, and spatial
+ decisional uncertainty models without recalibration. When comparing the four
spatial + decisional uncertainty models with/without recalibration, we modelled
the run effects as random, because a fixed effect run mean would have modelled
out the recalibration effect across runs. In EEG, we modelled the run effect as a
random effect (as they were not computed relative to a common baseline).

The marginal likelihood for each model and subject from the leave-one-subject-
out cross-validation scheme was used as an approximation to the model evidence.
We compared the models using the natural logarithm (loge) of the Bayes factors
averaged across participants32.

Evidential categories for Loge-Bayes factors. Throughout the manuscript we
report model comparison results using Bayes factors (BF), specifically the natural
logarithm of the Bayes factors (LogeBF) which are a convenient way of expressing
evidence in favour of a given model with respect to a reference model. Although
BFs and LogeBFs are defined on a continuous scale, it is useful to subdivide this
continuous scale into discrete evidential categories29. In our manuscript we fol-
lowed the heuristic classification scheme described by29 first proposed by77

expressing the level of evidence in favour of the tested model with respect to the
null model. Anecdotal evidence: BF of 1–3 (LogeBF of 0–1.1); Moderate evidence:
BF of 3–10 (LogeBF of 1.1–2.3); Strong evidence: BF of >10 (LogeBF of >2.3).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The processed data files necessary to reproduce the results using the shared analysis code
are available at figshare (https://doi.org/10.6084/m9.figshare.19469861.v2)78. The raw
data are available for research purposes only upon request from the corresponding
author (M.A., mate.aller@mrc-cbu.cam.ac.uk), because of constraints imposed by the
ethics approval under which this study was conducted. Source data are provided with
this paper.

Code availability
The analysis code for this manuscript is available at GitHub (https://github.com/
allermat/audiovisual_adaptation_fMRI_EEG)79.
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